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Topological Data Analysis

Data

Features Shape
Compute the topological features of 

the retrieved shape

Exploit the extracted features 
to describe, characterize,   

and discriminate data

Associate a topological 
structure to a dataset
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Networks:

A network is a complex system consisting of individuals or entities connected by 
specific ties such as friendship, common interest, and shared knowledge

Persistence and Complex Networks

E.g.  

✦ Social Networks 

✦ Sensor Networks 

✦ Biological Networks 

✦ Collaborative Networks 

✦  … 
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Representation:
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Arcs of E

Entities or individuals

Ties between entities

  A network can be represented by a graph G = (V, E) such that:
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Who is the most important individual?
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Centrality Measures:

Different criteria to underline different roles:

Key players 

Brokers 

Bridges 

Isolated 

 …

8
><

>:

A centrality measure is a funcEon F : V ⟶ ℝ assigning to each node a “centrality” value: 

✦ Degree centrality 

✦ Betweenness centrality 

✦ Closeness centrality 

✦ Eigenvector centrality 

✦ Erdös distance

Definition:
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D(v) := #{u 2 V | (u, v) 2 E}

Degree Centrality:

Given a node v of G = (V, E), 
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Degree Centrality:

Given a node v of G = (V, E), 
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Given a node v of G = (V, E), 
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B(v) :=
X

s 6=v 6=t

�st(v)

�st

where: 

✦ σst is the number of shortest 
paths from s to t  

✦ σst(v) is the number of those 
paths passing through v

Betweenness Centrality:
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Given a node v of G = (V, E), 

Closeness Centrality:

C(v) :=
#V � 1P
u2V d(u, v)
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Given a node v of G = (V, E), 

Eigenvector Centrality:

xv :=
1

�

X

u2V

Auv xu

Auv :=

(
1 if(u, v) 2 E

0 otherwise

where λ is constant and 

I.e. the vth entry of the eigenvector of 

A x = λ x

x > 0 implies λ must be the largest eigenvalue of A and x the corresponding eigenvector
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Given two nodes u, v of G = (V, E), 

Erdös Distance:

Eu(v) := d(u, v)

Named aMer Paul Erdös,  

✦ one of the most prolific mathemaOcians of the 20th century
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A centrality measure for any query!

Degree 

Betweenness 

Closeness 

Eigenvector 

Erdös

How many individuals can v reach directly? 

How likely is v to be the most direct route between two individuals? 

How fast can v reach everyone in the network? 

How well is v connected to other well-connected individuals? 

How far is v from a specific individual?

Centrality Measures:
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Sociocentric Networks:

✦ Structural Metrics: 
✤ Average of a Centrality Measure 
✤ Diameter 
✤ Density 
✤ Transitivity 
✤  …  

✦ Community Decompositions:
✤ Atomic Communities 
✤ Clustering Techniques
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Diameter:  

The longest shortest path between any 
two nodes

Diameter(G) = 2

Structural Metrics:

How far are two individuals at most? 



How close is G to being an “everyone knows everyone” network? 

Persistence and Complex Networks

Density: 

Number of edges of G 

Number of all possible edges 

Density(G) = 4/6 = 0.67

Structural Metrics:



How likely are two individuals connected to an individual v connected to each other? 

Persistence and Complex Networks

Transi[vity: 

Number of closed triplets of nodes  

Number of connected triplets 

TransiEvity(G) = 1/3 = 0.33

Structural Metrics:



Persistence and Complex Networks

Image from 
[Fortunato 2009]

✦ Atomic Communities: 
✤ Clique 
✤ n-Clique 
✤ n-Clan 
✤ n-Club 
✤ k-Plex 
✤ k-Core 
✤  … 

Community Decompositions:
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Image from 
[Fortunato 2009]

✦ Atomic Communities: 
✤ Clique 
✤ n-Clique 
✤ n-Clan 
✤ n-Club 
✤ k-Plex 
✤ k-Core 
✤  … 

Community Decompositions:

A maximal subgraph whose nodes are all adjacent to each other

Clique:

Clique
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Image from 
[Fortunato 2009]

✦ Atomic Communities: 
✤ Clique 
✤ n-Clique 
✤ n-Clan 
✤ n-Club 
✤ k-Plex 
✤ k-Core 
✤  … 

Community Decompositions:

A maximal subgraph such that the distance of                                                              
each pair of its nodes is not greater than n

n-Clique:

2-Clique
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1-Plex

Image from 
[Fortunato 2009]

✦ Atomic Communities: 
✤ Clique 
✤ n-Clique 
✤ n-Clan 
✤ n-Club 
✤ k-Plex 
✤ k-Core 
✤  … 

Community Decompositions:

A maximal subgraph in which each node is adjacent to all other nodes of the 
subgraph except at most k of them

k-Plex:



Persistence and Complex Networks

Clustering Techniques:

approach based on

AgglomeraOve (boVom-up)

Divisive (top-down)

Centrality Measures

Atomic CommuniOes

Quality FuncOons
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Girvan-Newman Algorithm:

Iterated removal of the edge with 
largest betweenness centrality  

Clustering Techniques:

approach based on

AgglomeraOve (boVom-up)

Divisive (top-down)

Centrality Measures

Atomic CommuniOes

Quality FuncOons
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Clique Percola[on:
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Decomposi[on in k-clique communiOes k = 4

k-clique community: maximal union of cliques 
of size k pairwise connected by a sequence of k-
adjacent cliques

k-adjacency: two cliques of size k are  
k-adjacent if they share k-1 nodes

Clustering Techniques:

approach based on

Agglomera[ve (bo_om-up)

Divisive (top-down)

Centrality Measures

Atomic Communi[es

Quality FuncOons
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Modularity-based Algorithm:

Modularity: measure for  
clustering quality

Iterated aggrega[on of communiOes 
of nodes whose merging increases 

modularity

Clustering Techniques:

approach based on

Agglomera[ve (bo_om-up)

Divisive (top-down)

Centrality Measures

Atomic CommuniOes

Quality Func[ons
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Several Application based on Persistent Homology:

✦ Sensor Networks [De Silva 2013] 

✦ Brain Networks [Lee et al. 2012] 

✦ Collabora[ve/Co-occurence Networks [Carstens et al. 2013; Rieck et al. 2016] 

✦ Geolocalized Networks [Fellegara et al. 2016] 

✦  …

Simplicial Complex Representation:

GA network is represented through:  

✦ Simplicial complex Flag(G) induced by G 

Simplices of Flag(G)                   Cliques of G
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✦ Sensor Networks [De Silva 2013] 

✦ Brain Networks [Lee et al. 2012] 

✦ Collabora[ve/Co-occurence Networks [Carstens et al. 2013; Rieck et al. 2016] 

✦ Geolocalized Networks [Fellegara et al. 2016] 

✦  …

Simplicial Complex Representation:

A network is represented through:  

✦ Simplicial complex Flag(G) induced by G 

Simplices of Flag(G)                   Cliques of G

Flag(G)

Several Application based on Persistent Homology:
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Filtration Persistence Diagram

K1 K2 K3

Topological summaries have proven to be parOcularly effecOve to dis[nguish networks
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Topological summaries have proven to be parOcularly effecOve to dis[nguish networks 

but 

It is hard to obtain a meaningful interpreta[on for homological cycles

Filtration Persistence Diagram

K1 K2 K3
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Can we … 

✦ visualize/localize the homological information through a graph? 

✦ study the persistence of something different than homological cycles?

Filtration Persistence Diagram

K1 K2 K3
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✦ A Primer on Complex Networks 

✦ Homological Scaffolds 

✦ Clique Community Persistence
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Dataset:

A collection of 30 weighted graphs derived from fMRI (functional magnetic 
resonance imaging) obtained by scanning 15 different subjects 

For each graph, 

For each subject, 2 graphs obtained on 2 separate occasions, 14 days apart: 

✦ Placebo (10 ml saline, intravenous injecOon) in one case 

✦ Psilocybin (2 mg dissolved in 10 ml saline) in the other one 

8
><

>:

8
><

>:

Nodes    

Arcs Weights

169 (Sub)Cortical Brain Regions

(Inverse of) Partial Correlations

Goal:
Spot the differences between the two situations
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Results: Applying the presented TDA pipeline, one obtains:

(log-)Probability densiOes of H1 for the placebo (leM) and the psilocybin (right) groups

Image from     
[Petri et al. 2014]
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Results: Applying the presented TDA pipeline, one obtains:
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Persistence and birth distribuOons of H1 for the placebo (blue) and the psilocybin (red) groups
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Homological Scaffolds:

Let g1, g2, …, gm be the representative cycles of H1 occurring along the filtration of a 

weighted graph G = (V, E, w: E → ℝ), the frequency homological scaffold is the graph  

Hf
G = (V, E, wf: E → ℝ)  

defined by

How to visualize/localize the homological information?
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Homological Scaffolds:

Let g1, g2, …, gm be the representative cycles of H1 occurring along the filtration of a 

weighted graph G = (V, E, w: E → ℝ), the persistence homological scaffold is the graph  

Hp
G = (V, E, wp: E → ℝ)  

defined by

How to visualize/localize the homological information?
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Homological Scaffolds:

Persistence homological scaffolds for the placebo (leM) and the psilocybin (right) groups
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Homological Scaffolds:

Image from [Guerra et al. 2021]
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✦ A Primer on Complex Networks 

✦ Homological Scaffolds 

✦ Clique Community Persistence
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Two k-cliques are k-adjacent if they share k-1 nodes

k=3 k=4

A maximal union of k-cliques  

pairwise connected by a sequence of k-adjacent cliques

k-Clique Community:

k-Adjacency:
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k = 4

✦ Reveal highly connected communiOes 
✦ Allow overlaps 
✦ Have a hierarchical structure

k-Clique Community Decomposition:
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Gi is contained in Gj

Given a weighted network G and two threshold values i < j,

1 1

1
1

1 1

1 1

1
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2

2
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Gi

i=1
Gj

j=2

Clique Communities and Weighted Networks:
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1 1

1
1

1 1

1 1

1
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1

Each k-clique community of Gi is contained in exactly 
one k-clique community of Gj

Clique Communities and Weighted Networks:

Given a weighted network G and two threshold values i < j,

Gi

i=1
Gj

j=2
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✦ Building a sequence of k-dual graphs: 

• ver[ces ↔ k-cliques 

• edges ↔ adjacent k-cliques 

✦ Tracking the connected components 
of the sequence of k-dual graphs

k = 3

w w w w

Fixing a value for k and varying the edge-weight threshold, the persistence of k-clique 
communities of G can be tracked by:

Clique Community Persistence:
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The presented approach allows for designing tools for: 

✦ Network Comparison 

• Comparison Measures 

- Persistence Indicator Func[on (PIF) 

- PIF-based distance 

• Clique Community Centrality Measure 

✦ Single Network Analysis 

• Interac[ve Visualiza[on Tool based on Nested Graphs

Clique Community Persistence:
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7�!w # k-cliques communi[es “alive” at threshold w

Defined as the funcOon

assigning:

fk : R �! N

ww

k k

Persistence Indicator Function:
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✦ Co-occurrence networks of Shakespearean plays 

• 37 plays considered 

✦ In each network: 

• nodes ↔  characters of the play 

• edges  ↔ characters appearing in the same scene 

• edge weight  ↔ inverse of the number of interac[ons

Persistence Indicator Function:
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PIF enables a comparison of structural differences between groups of plays 

Persistence Indicator Function:
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Given two persistence indicator funcOons f and g,

PIF-based distance is defined to be the Lp distance between f and g:

dist(f, g) =
⇣Z

R
|f(x)� g(x)|p dx

⌘ 1
p

✦ QuanOfies dissimilariOes between PIFs 

✦ Easier to be computed than Wasserstein and boVleneck distances 

✦ Highly correlated to Wasserstein distance

PIF-Based Distance:
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✦ Biological networks represenOng variants of 

human brain connec[vity 

• 9 instances considered 

✦ In each network: 

• nodes  ↔  brain areas 

• edges  ↔  fibers connec[ng different areas

PIF-Based Distance:
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PIF-based distance reveals differences between networks that common 
graph measures are incapable of detecEng

PIF-Based Distance:
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centrality(v) =
X

C3v

pers(C)

Clique community centrality of a node v is defined as

where: 

✦ C is any clique community containing v 

✦  pers(C)  is the “lifespan” of C   

Nodes belonging to high-persistence communi[es are idenEfied as relevant

Clique Community Centrality:
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✦ Collabora[ve networks describing scien[st          
co-authorship of the “Condensed Ma_er”           
arXiv category  

• 3 snapshots in Eme considered (1999, 2003, 2005) 

✦ Network sizes: 
• 16K - 40K nodes 
• 47K - 175K edges

Clique community centrality allows for  

✦ evaluaEng the evolu[on of network connec[vity 

✦ filtering away the less relevant nodes 

Clique Community Centrality:



Persistence and Complex Networks

1999

2003

2005

Density esEmates of the clique 
community centrality values

Clique Community Centrality:
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The presented approach allows for designing tools for: 

✦ Network Comparison 

• Comparison Measures 

- Persistence Indicator Func[on (PIF) 

- PIF-based distance 

• Clique Community Centrality Measure 

✦ Single Network Analysis 

• Interac[ve Visualiza[on Tool based on Nested Graphs

Clique Community Persistence:
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Each (k+1)-clique community of Gi is contained in exactly 
one k-clique community of Gi

k = 3 k + 1 = 4

Clique Communities and Multiple k-Values:

Given a weighted network G and any threshold value i,
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✦ Originally defined for connected components in scalar fields [Lukasczyk et al. 2017] 

✦ Illustrates evolu[ons across two parameters 

A E D

B C

A E D

B C

A E D

B C

A E D

B C

A E D

B C

Nested Graph:
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✦ Co-occurrence network between the 

characters in Victor Hugo’s novel 
“Les Misérables” 

• 77 nodes 

• 254 edges 

✦ edge weight   ↔  1 / # co-occurrences 

Nested Graph:
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Nested-based visualizaOon tool allows the user for
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Nested-based visualizaOon tool allows the user for 

✦ focusing on the evoluEon of a specific clique 

community 

✦ selec[ng and interac[vity exploring different 

edge weights and clique degrees

while the force-directed graph layout and the nested graph change accordingly
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Nested-based visualizaOon tool allows the user for 

✦ focusing on the evoluEon of a specific clique 

community 

✦ selec[ng and interac[vity exploring different 

edge weights and clique degrees
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 w = 29

while the force-directed graph layout and the nested graph change accordingly
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while the force-directed graph layout and the nested graph change accordingly

Nested-based visualizaOon tool allows the user for 

✦ focusing on the evoluEon of a specific clique community  

✦ selec[ng and interac[vity exploring different edge weights and 

clique degrees

Intuitively:

↔edge-weight variaEon reveal the core part of a community

analyze community according to 
different granulari[es

clique-degree variaEon ↔
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