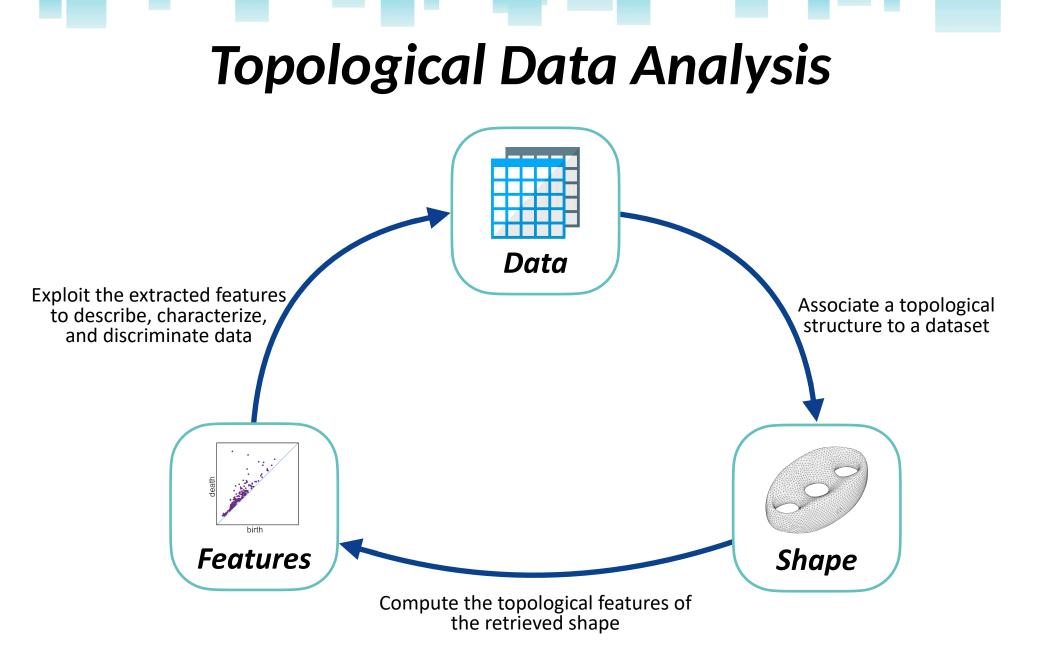
Topological Data Analysis

Persistence & Networks

Ulderico Fugacci

CNR - IMATI



A Primer on Complex Networks

- Homological Scaffolds
- Clique Community Persistence

A Primer on Complex Networks

Homological Scaffolds

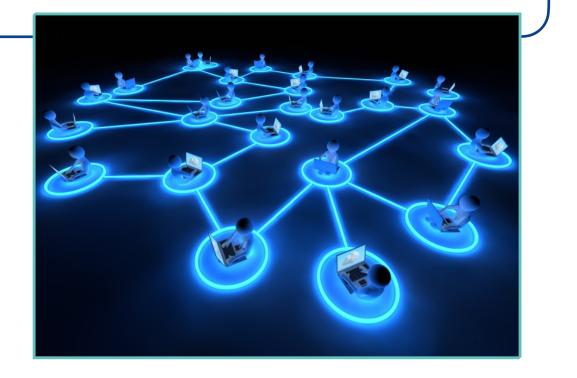
Clique Community Persistence

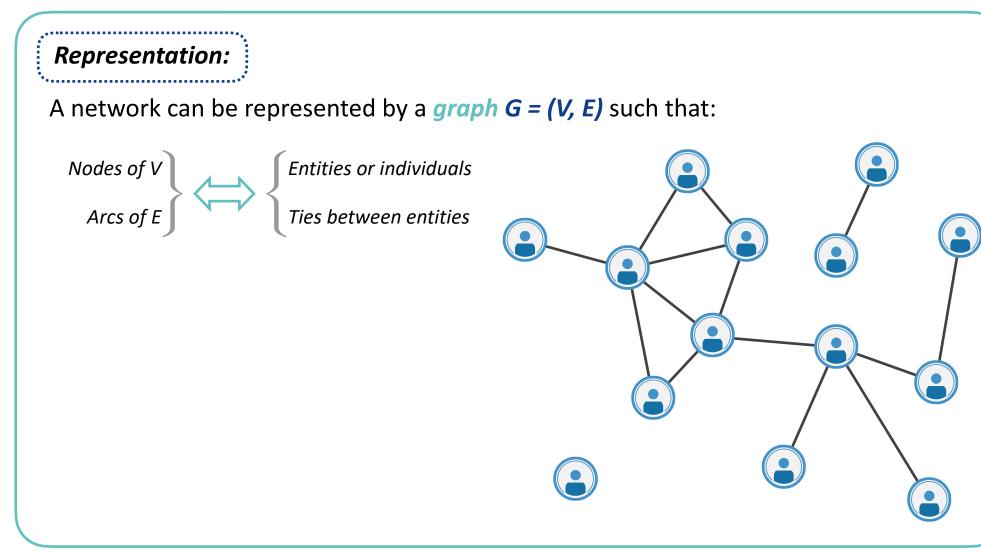
Networks:

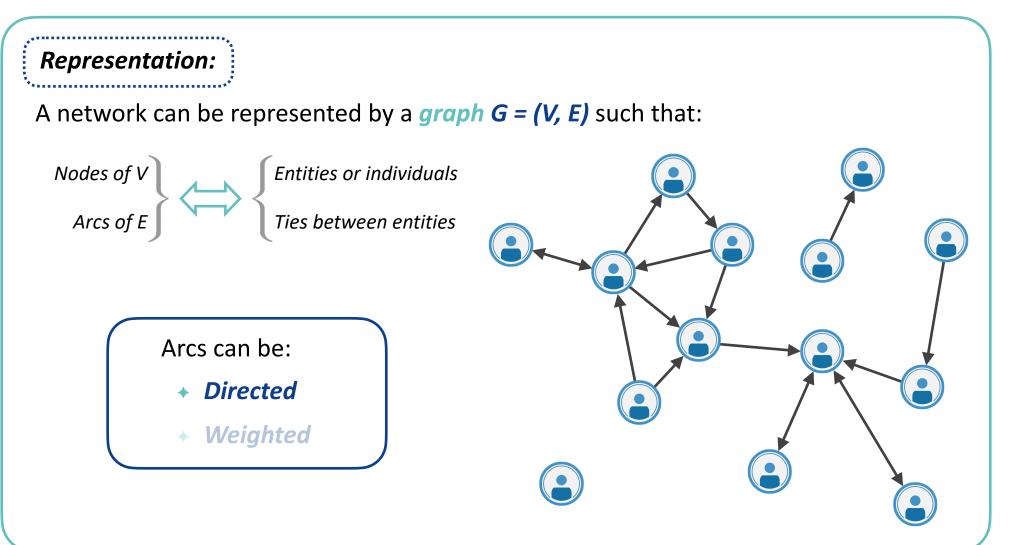
A *network* is a complex system consisting of *individuals or entities connected by specific ties* such as friendship, common interest, and shared knowledge

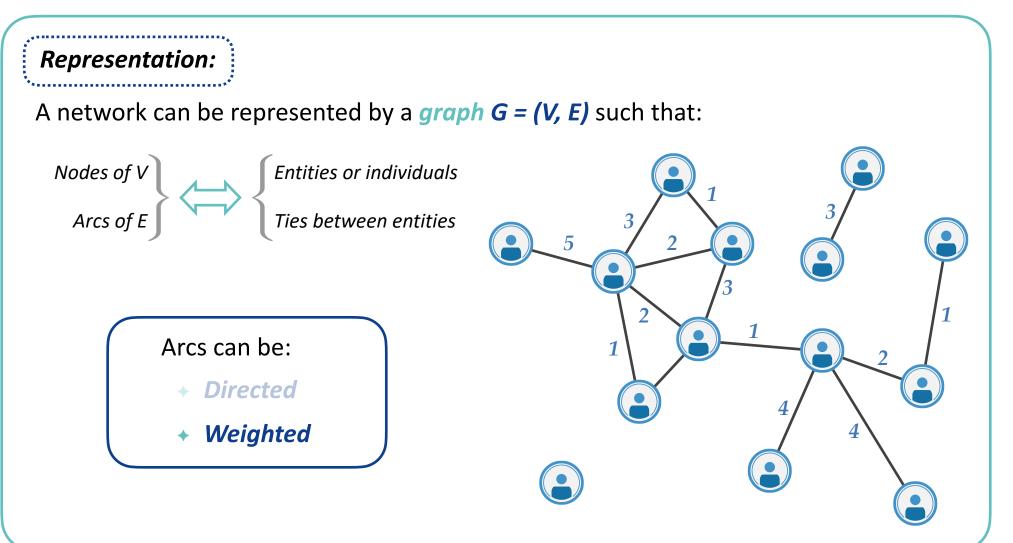
E.g.

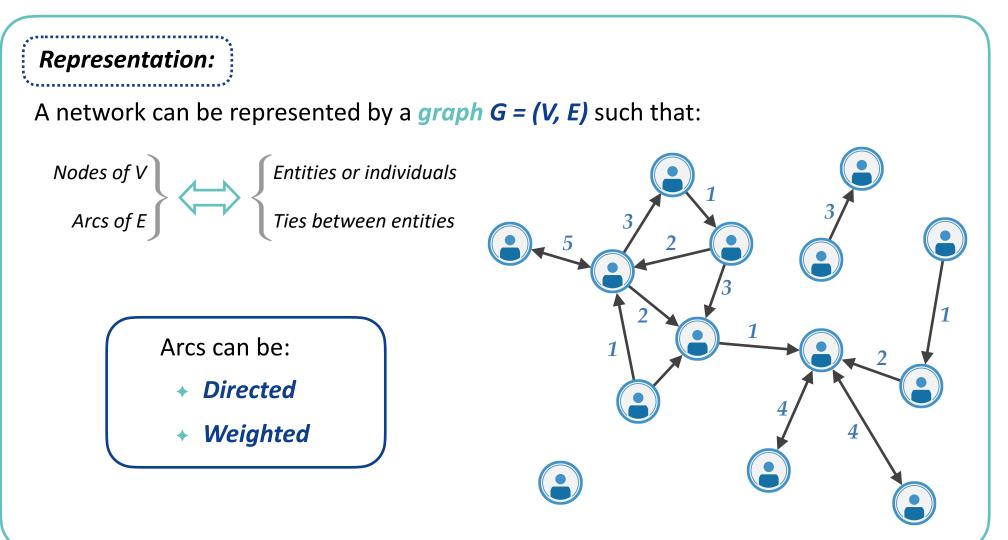
- Social Networks
- Sensor Networks
- + Biological Networks
- Collaborative Networks

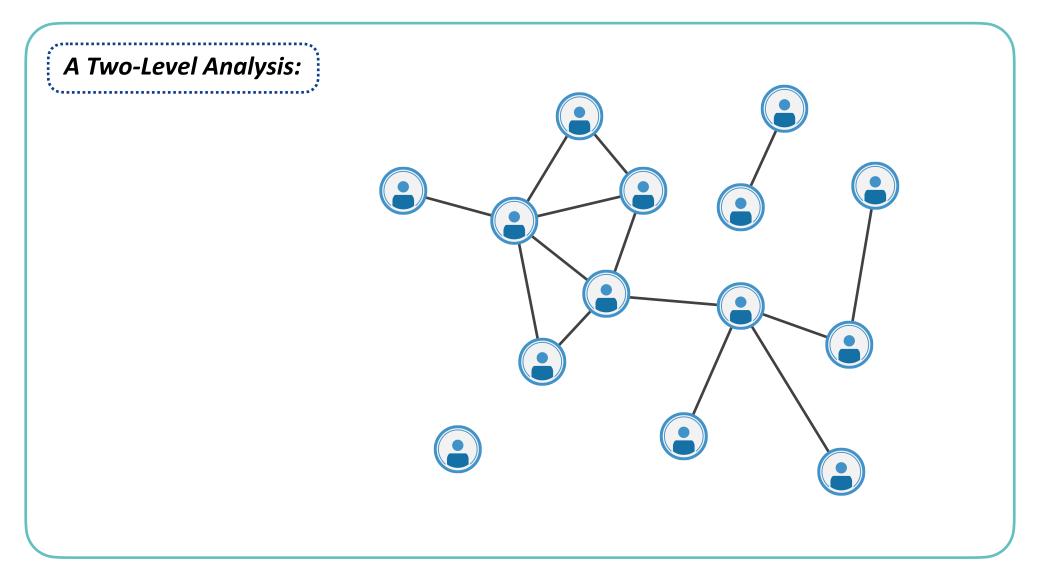


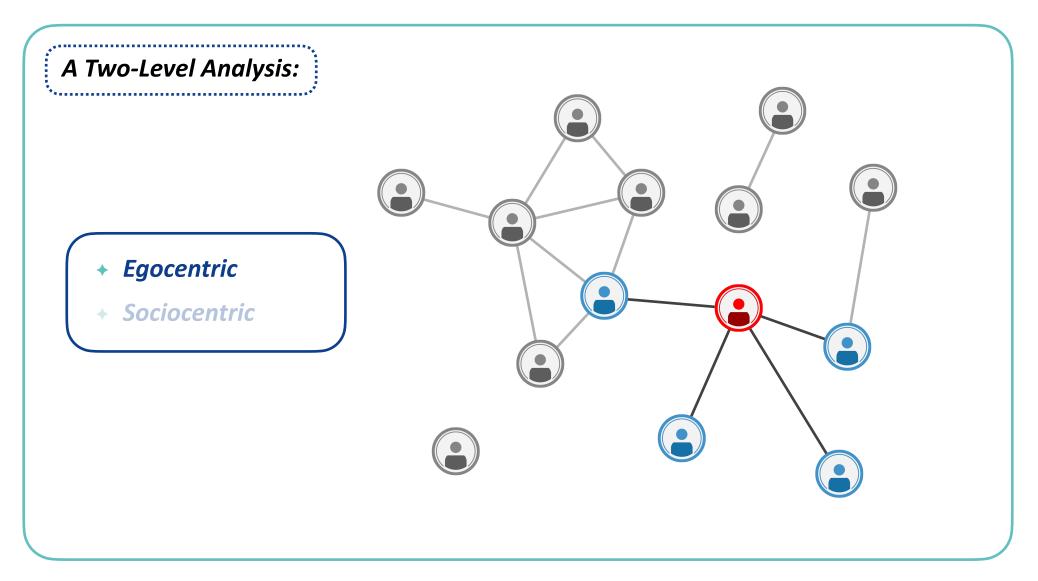


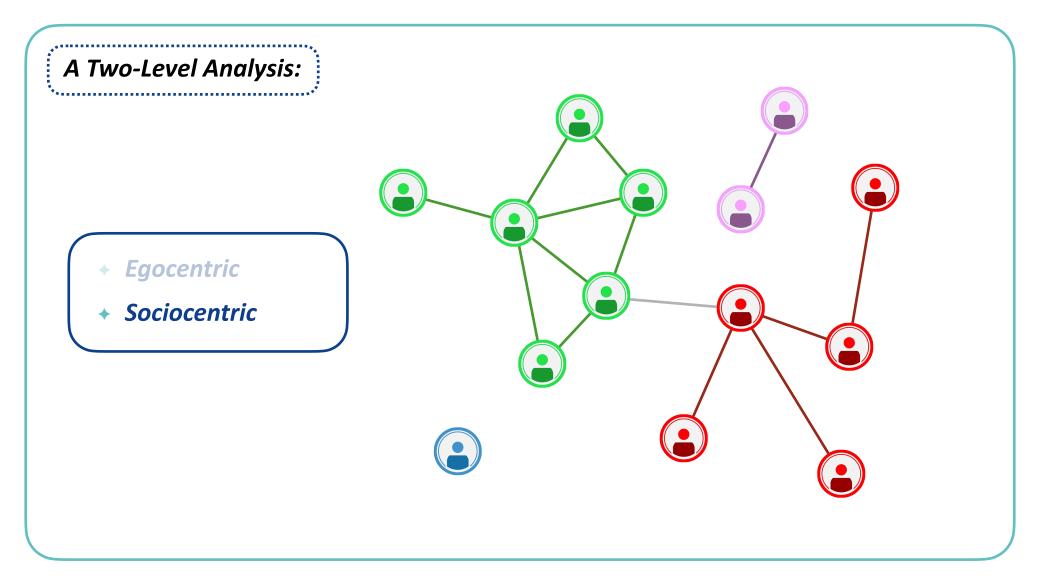




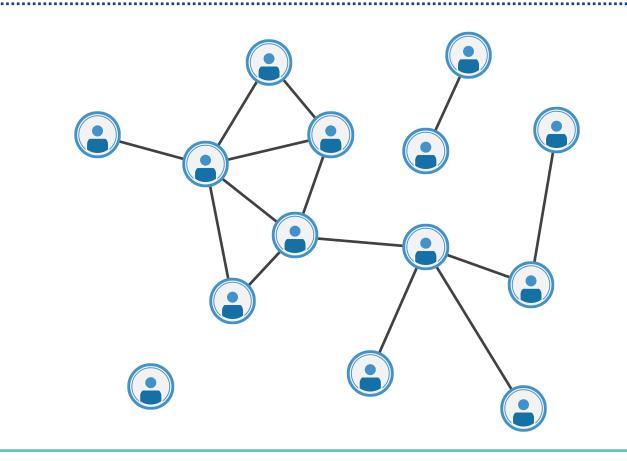




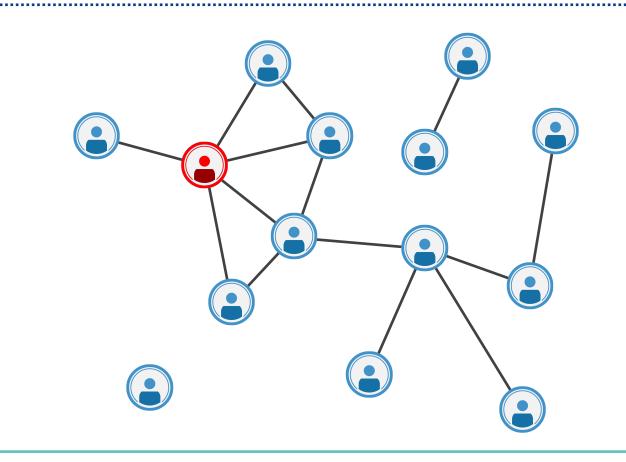




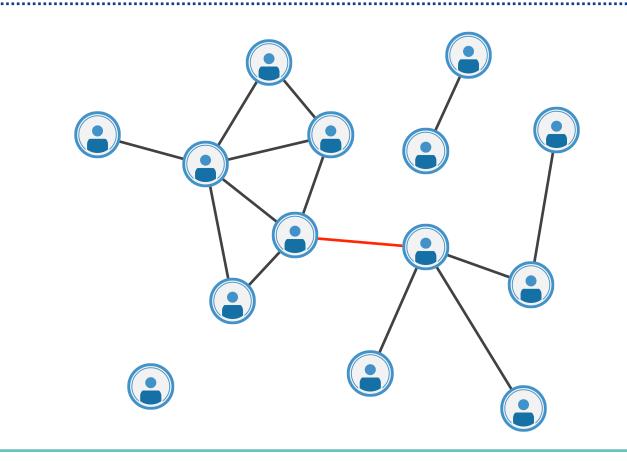
Persistence and Complex Networks



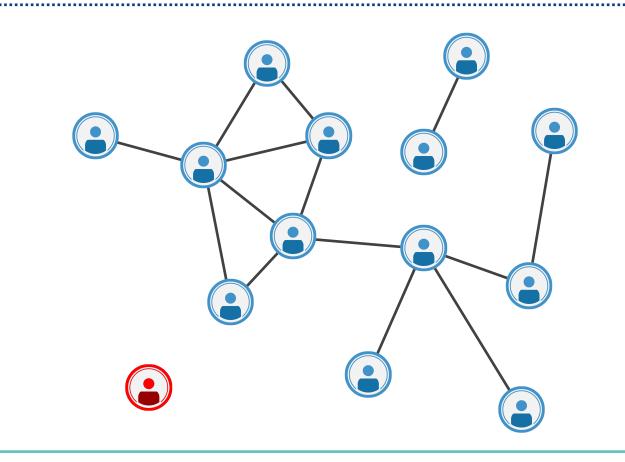
Persistence and Complex Networks

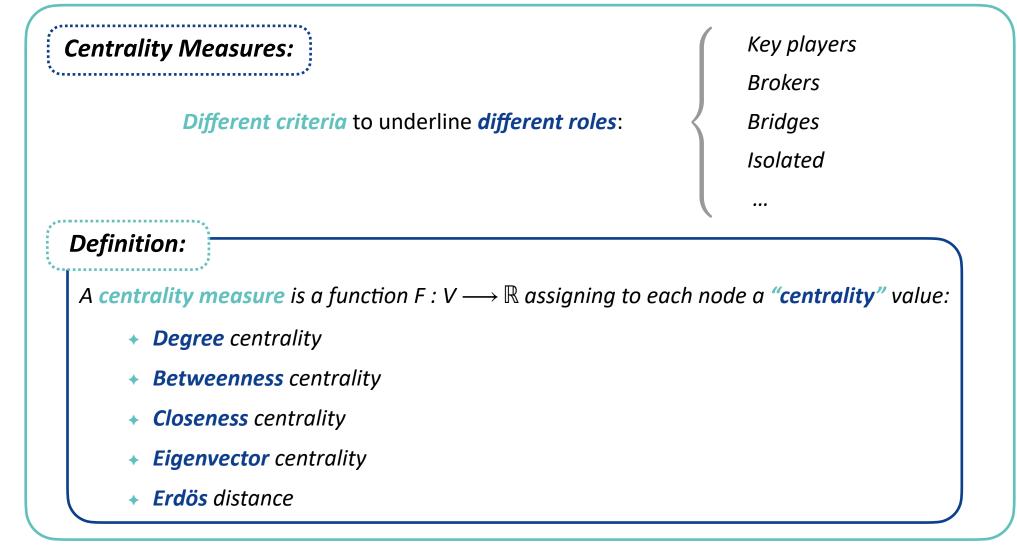


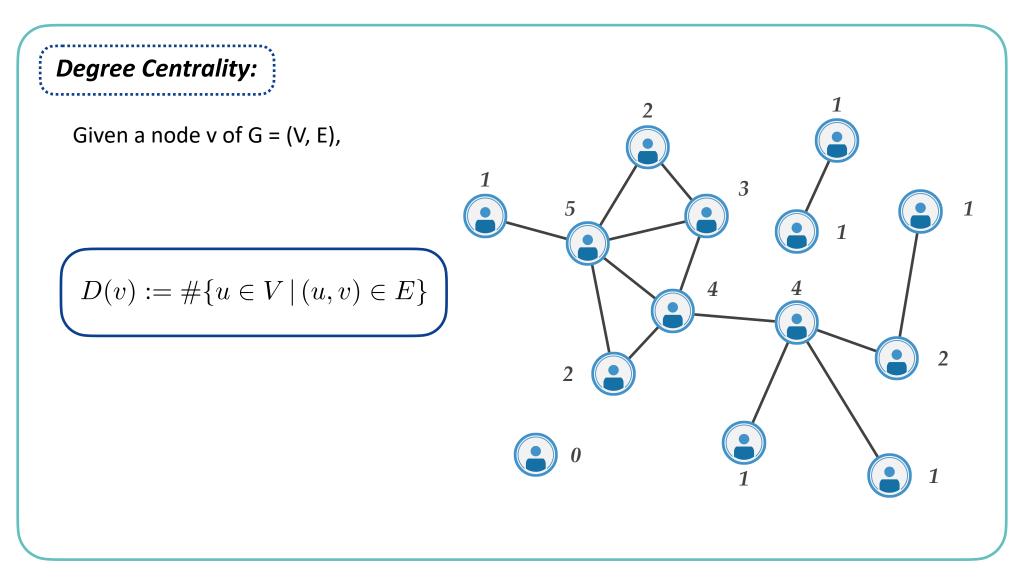
Persistence and Complex Networks

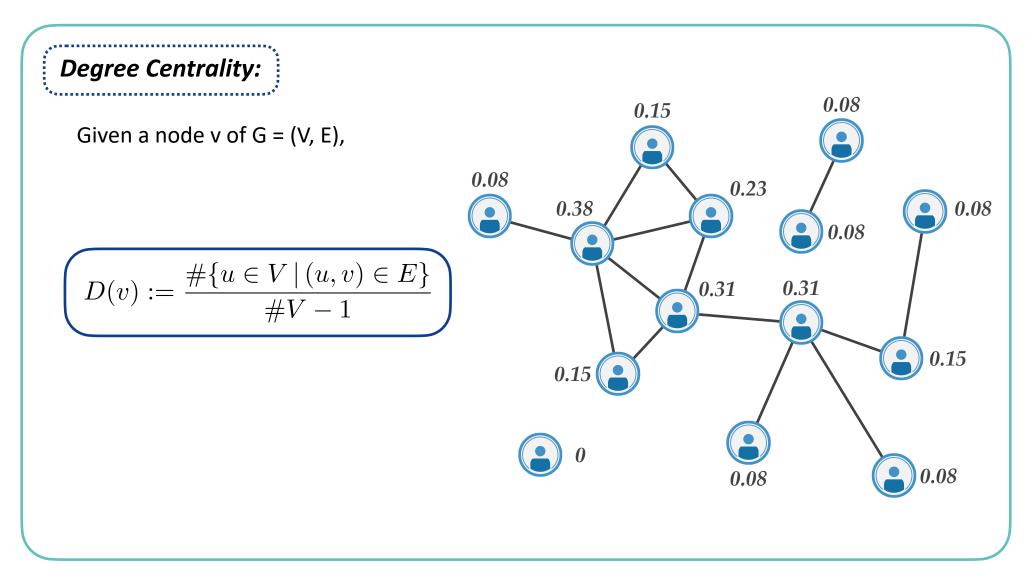


Persistence and Complex Networks









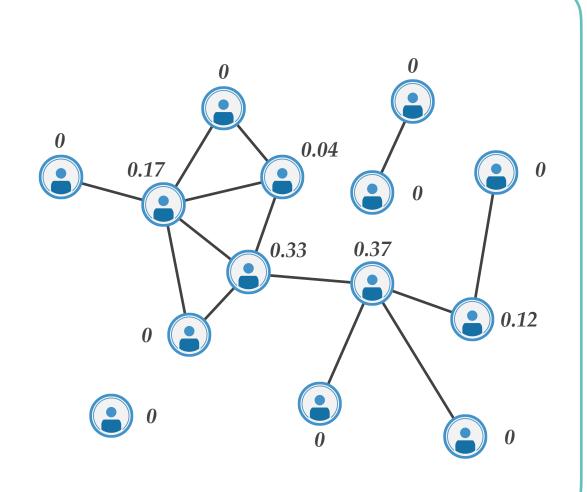
Betweenness Centrality:

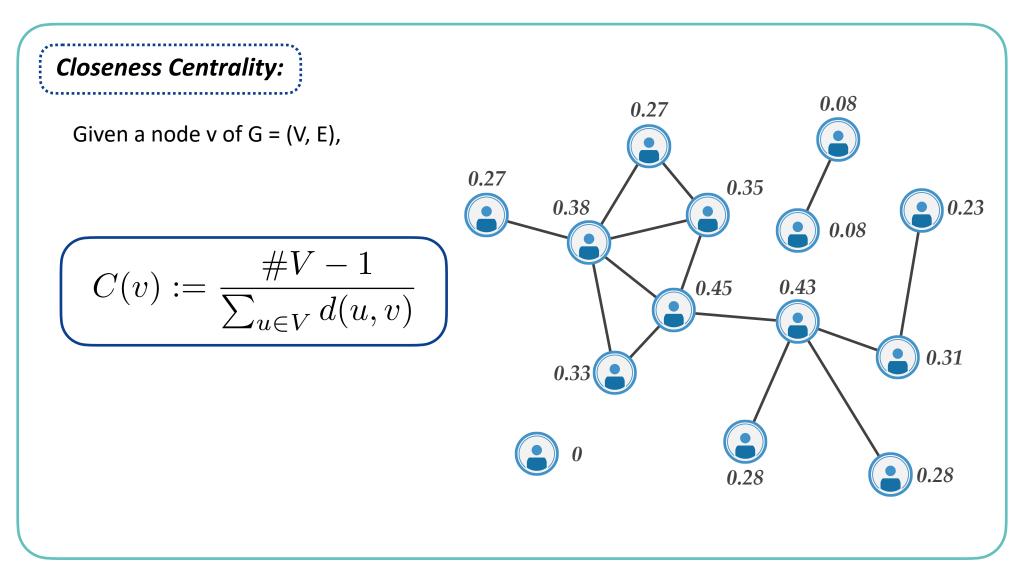
Given a node v of G = (V, E),

$$B(v) := \sum_{s \neq v \neq t} \frac{\sigma_{st}(v)}{\sigma_{st}}$$

where:

- σ_{st} is the number of shortest
 paths from s to t
- *σ_{st}(v)* is the number of those paths *passing through v*





Eigenvector Centrality:

Given a node v of G = (V, E),

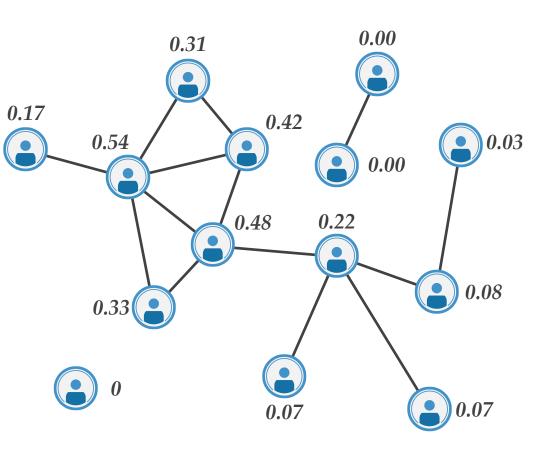
$$x_v := \frac{1}{\lambda} \sum_{u \in V} A_{uv} \, x_u$$

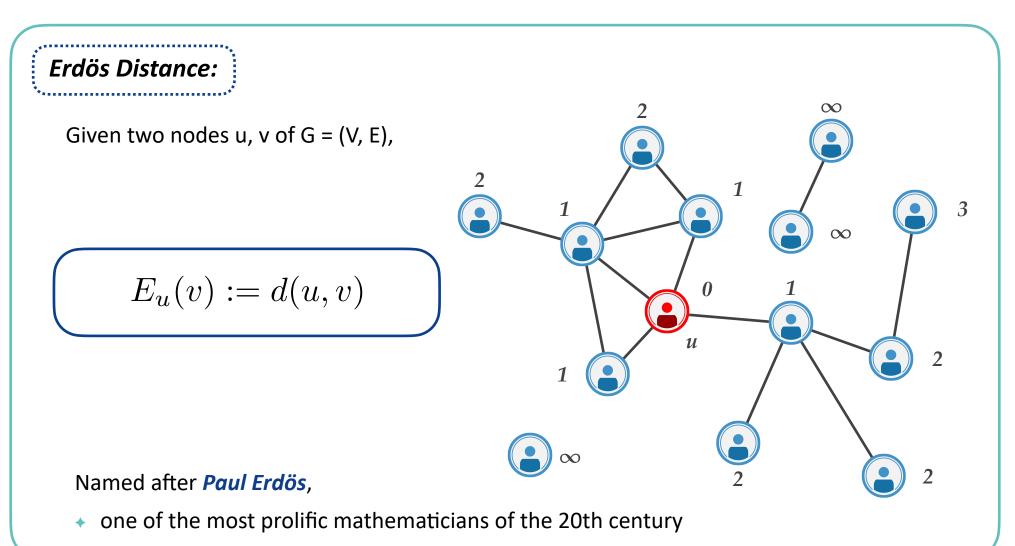
where $\boldsymbol{\lambda}$ is constant and

$$A_{uv} := \begin{cases} 1 & if(u,v) \in E\\ 0 & otherwise \end{cases}$$

I.e. the v^{th} entry of the eigenvector of

 $A x = \lambda x$





Centrality Measures:

A centrality measure for any query!

Degree	How many individuals can v reach directly?
Betweenness	How likely is v to be the most direct route between two individuals?
Closeness	How fast can v reach everyone in the network?
Eigenvector	How well is v connected to other well-connected individuals?
Erdös	How far is v from a specific individual?

Sociocentric Networks:

Structural Metrics:

- * Average of a Centrality Measure
- * Diameter
- * Density
- * Transitivity
- * ...

• Community Decompositions:

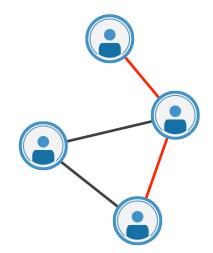
- * Atomic Communities
- Clustering Techniques

Structural Metrics:

How far are two individuals at most?

Diameter:

The longest shortest path between any two nodes



Diameter(G) = 2

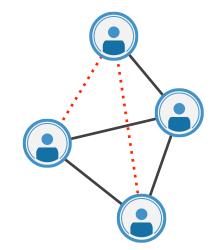
Structural Metrics:

How close is G to being an "everyone knows everyone" network?

Density:

Number of edges of G

Number of all possible edges



Density(G) = 4/6 = 0.67

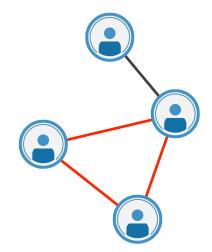
Structural Metrics:

How likely are two individuals connected to an individual v connected to each other?

Transitivity:

Number of closed triplets of nodes

Number of connected triplets

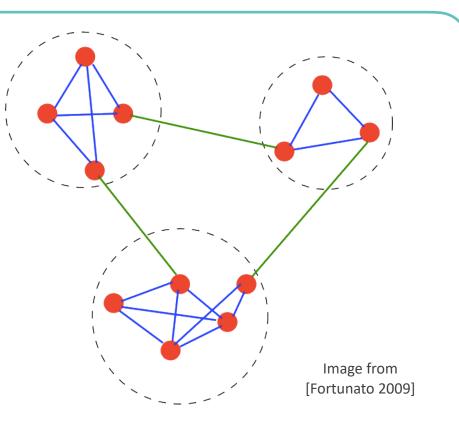


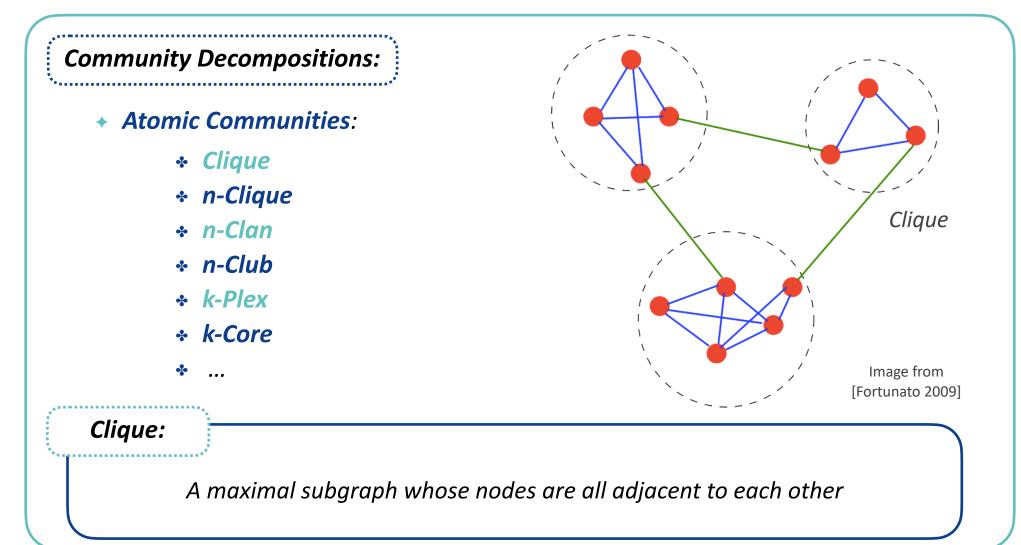
Transitivity(*G*) = 1/3 = 0.33

Persistence and Complex Networks

Community Decompositions:

- Atomic Communities:
 - * Clique
 - * n-Clique
 - ✤ n-Clan
 - * n-Club
 - * k-Plex
 - * k-Core
 - * ...



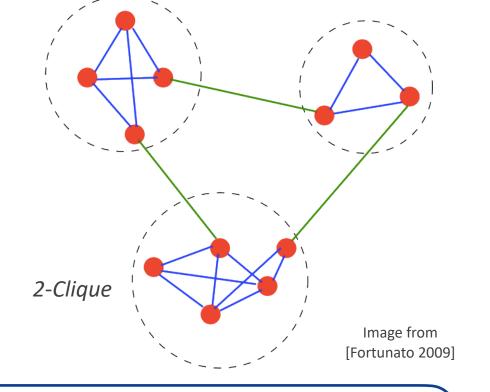


Persistence and Complex Networks

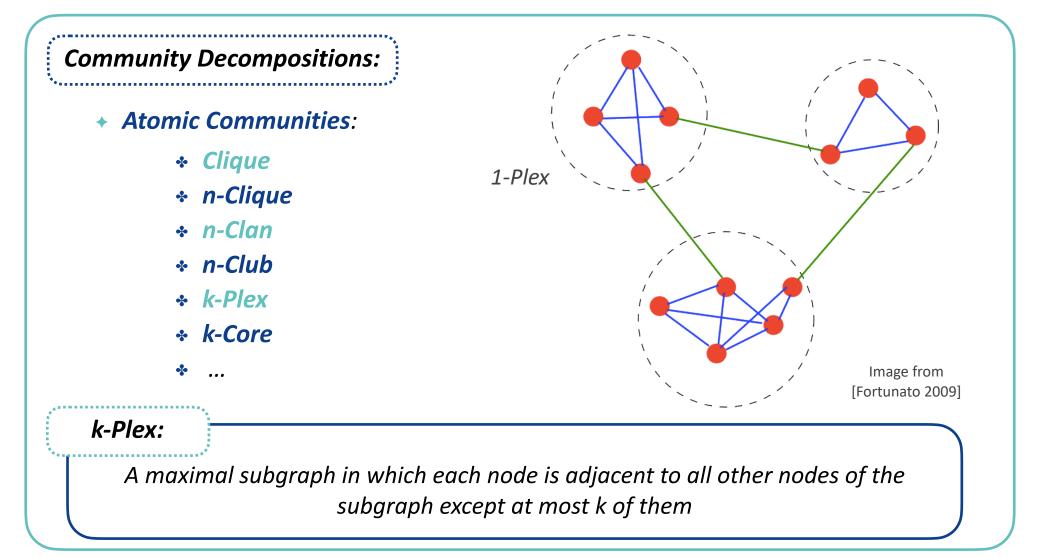
Community Decompositions:

- + Atomic Communities:
 - * Clique
 - * n-Clique
 - * n-Clan
 - * n-Club
 - * k-Plex
 - * k-Core

n-Clique:



A maximal subgraph such that the distance of each pair of its nodes is not greater than n



Clustering Techniques:

Agglomerative (bottom-up)

Divisive (top-down)

approach based on

Centrality Measures

Atomic Communities

Quality Functions

Clustering Techniques:

Agglomerative (bottom-up)

Divisive (top-down)

Girvan-Newman Algorithm:

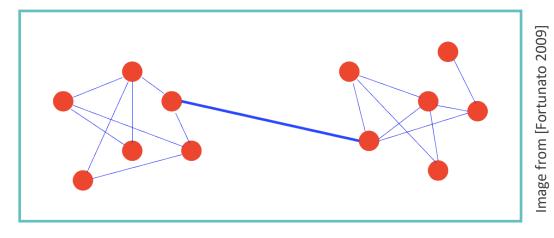
approach based on

Centrality Measures

Atomic Communities

Quality Functions

Iterated removal of the edge with largest *betweenness centrality*



approach based on

Persistence and Complex Networks

Clustering Techniques:

Agglomerative (bottom-up)

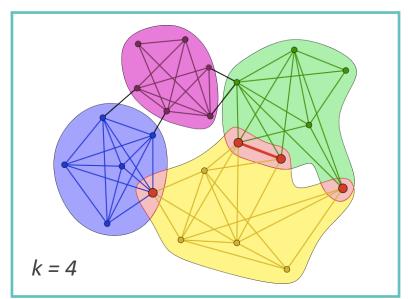
Divisive (top-down)

Clique Percolation:

k-adjacency: two cliques of size *k* are *k*-adjacent if they share *k*-1 nodes

k-clique community: maximal union of cliques of size *k* pairwise connected by a sequence of *k*adjacent cliques

Decomposition in k-clique communities



Centrality Measures

Atomic Communities

Quality Functions

approach based on

Persistence and Complex Networks

Clustering Techniques:

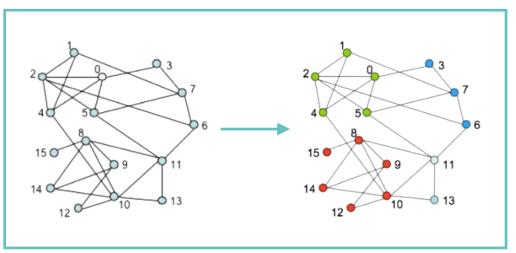
Agglomerative (bottom-up)

Divisive (top-down)

Modularity-based Algorithm:

Modularity: measure for clustering quality

Iterated aggregation of communities of nodes whose merging increases modularity

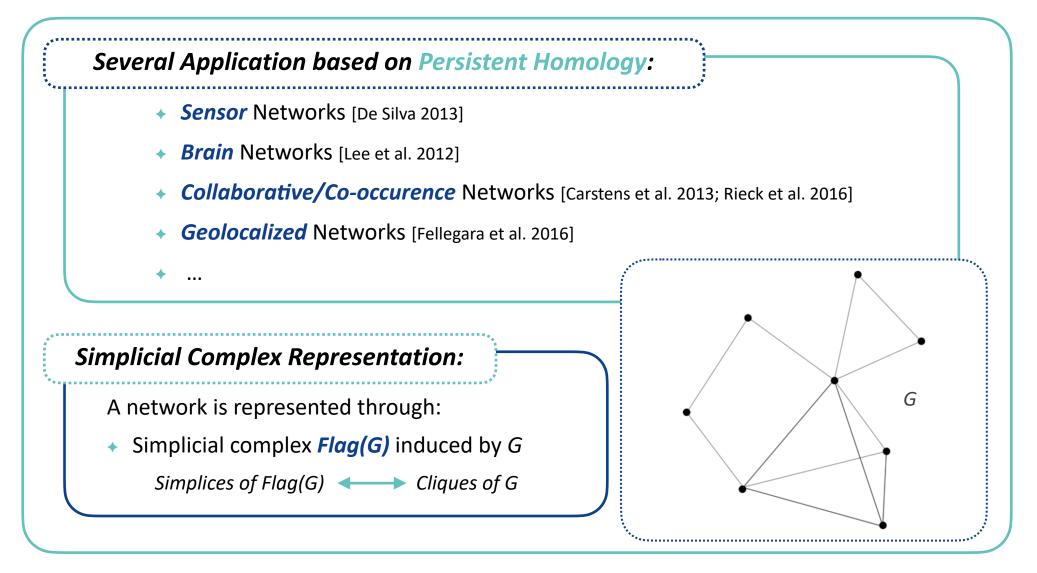


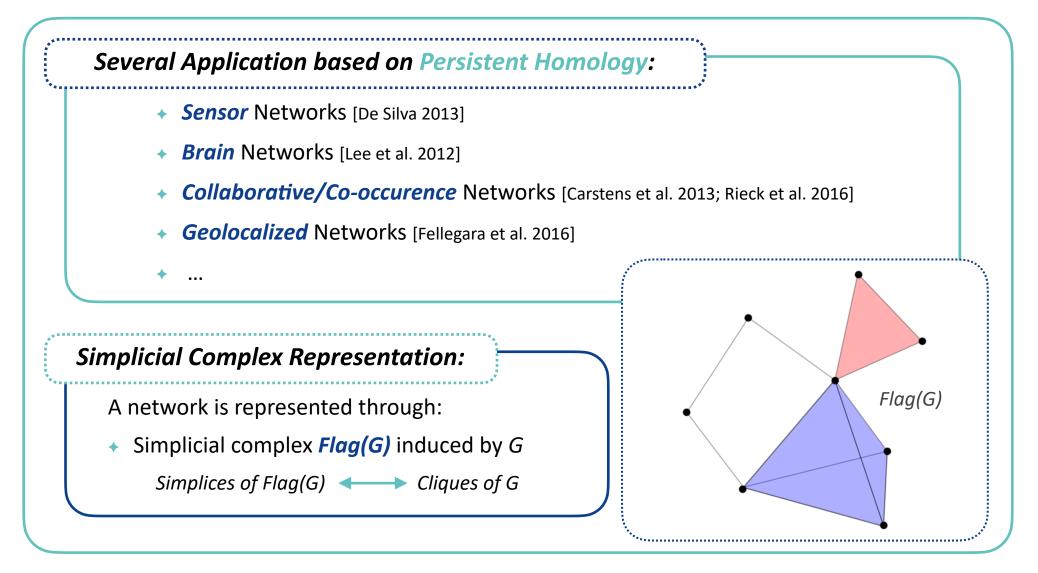
Centrality Measures

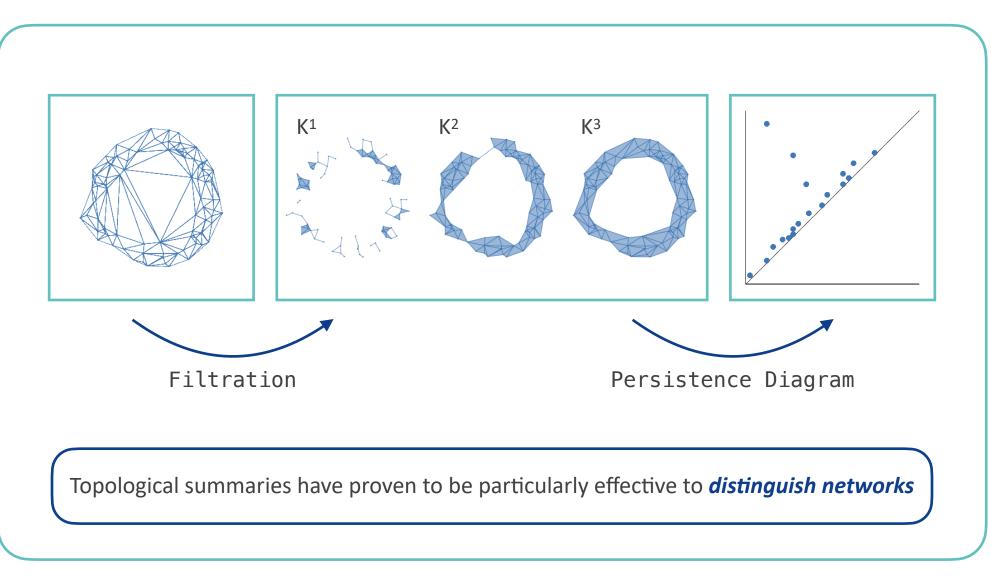
Atomic Communities

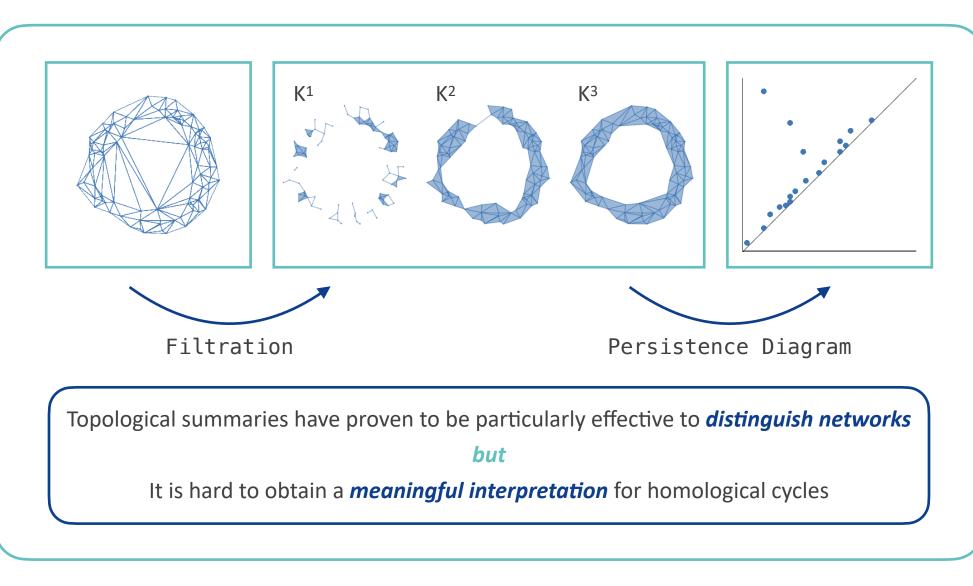
Quality Functions

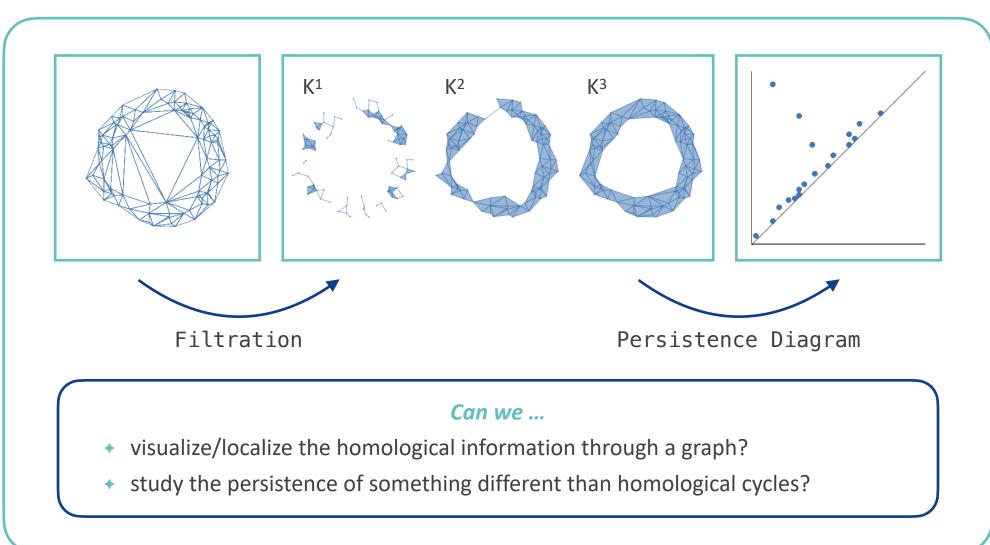
mage from [Blondel et al. 2008]











A Primer on Complex Networks

Homological Scaffolds

Clique Community Persistence

Dataset:

Goal:

A collection of **30** weighted graphs derived from **fMRI** (functional magnetic resonance imaging) obtained by scanning 15 different subjects For each graph,

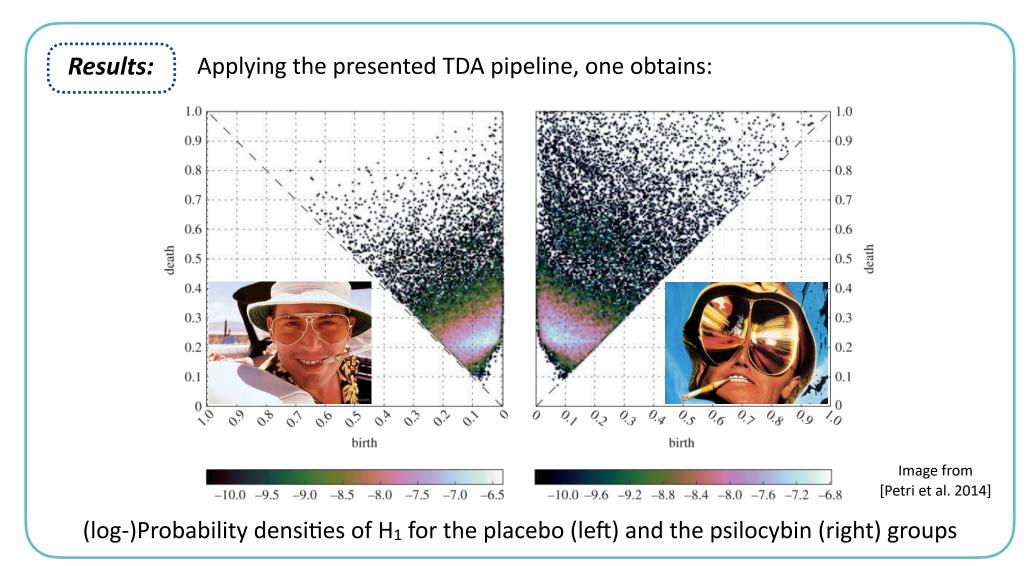
 Nodes
 169 (Sub)Cortical Brain Regions

 Arcs Weights
 (Inverse of) Partial Correlations

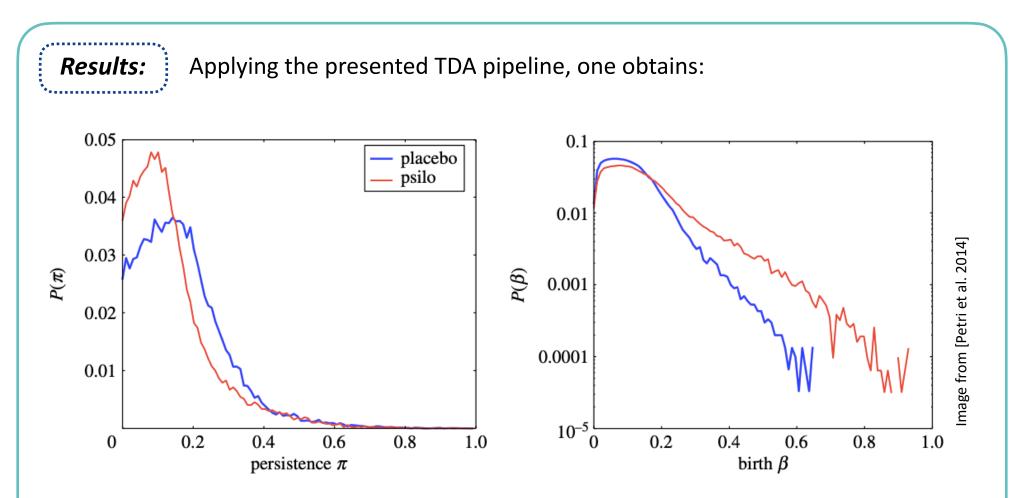
For each subject, 2 graphs obtained on 2 separate occasions, 14 days apart:

- Placebo (10 ml saline, intravenous injection) in one case
- Psilocybin (2 mg dissolved in 10 ml saline) in the other one

Spot the differences between the two situations



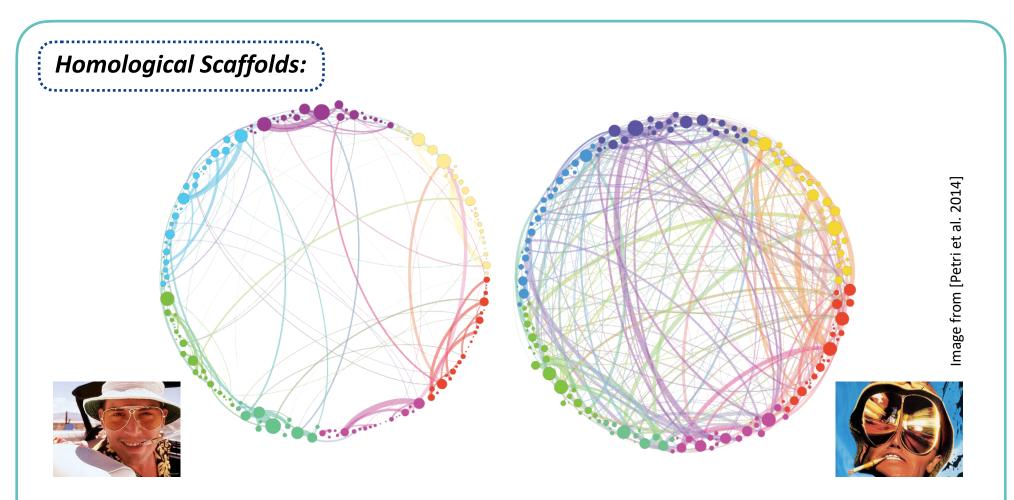
Persistence and Complex Networks



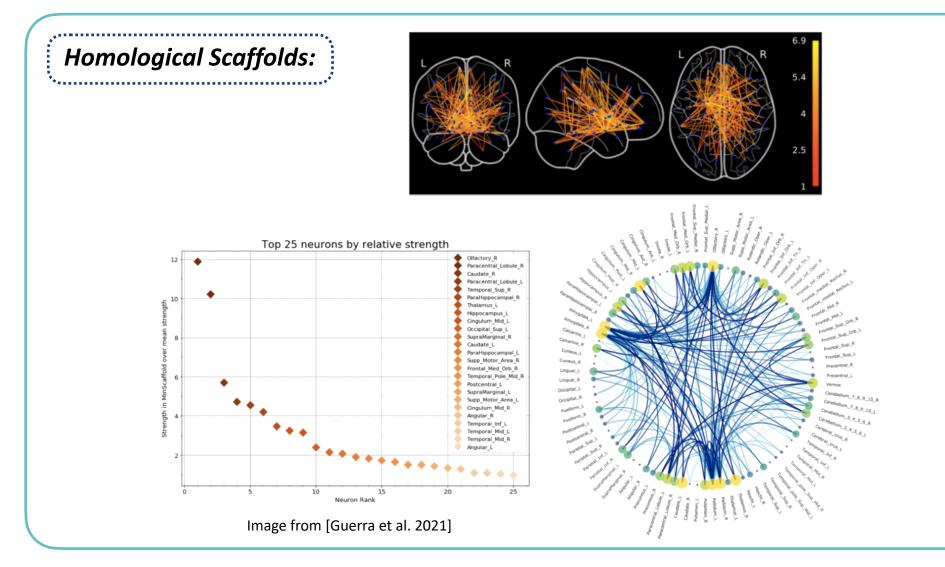
Persistence and birth distributions of H₁ for the placebo (blue) and the psilocybin (red) groups

Homological Scaffolds: How to visualize/localize the homological information? Let $g_1, g_2, ..., g_m$ be the representative cycles of H_1 occurring along the filtration of a weighted graph G = (V, E, w: $E \rightarrow \mathbb{R}$), the *frequency homological scaffold* is the graph $H^{f}_{G} = (V, E, w^{f}: E \rightarrow \mathbb{R})$ defined by mage from [Lord et al. 2016] $w^{f}(e) = \#\{i \mid e \in g_i\}$ а 3

Homological Scaffolds: How to visualize/localize the homological information? Let $g_1, g_2, ..., g_m$ be the representative cycles of H_1 occurring along the filtration of a weighted graph G = (V, E, w: $E \rightarrow \mathbb{R}$), the *persistence homological scaffold* is the graph $H^{p}_{G} = (V, E, w^{p}: E \longrightarrow \mathbb{R})$ 1) defined by mage from [Lord et al. 2016] d e) 0.2 0.2 $w^p(e) = \sum \pi_{g_i}$ 0.2 0.3 0.5 $i \mid e \in q_i$ 0.3a 0.3 2 3



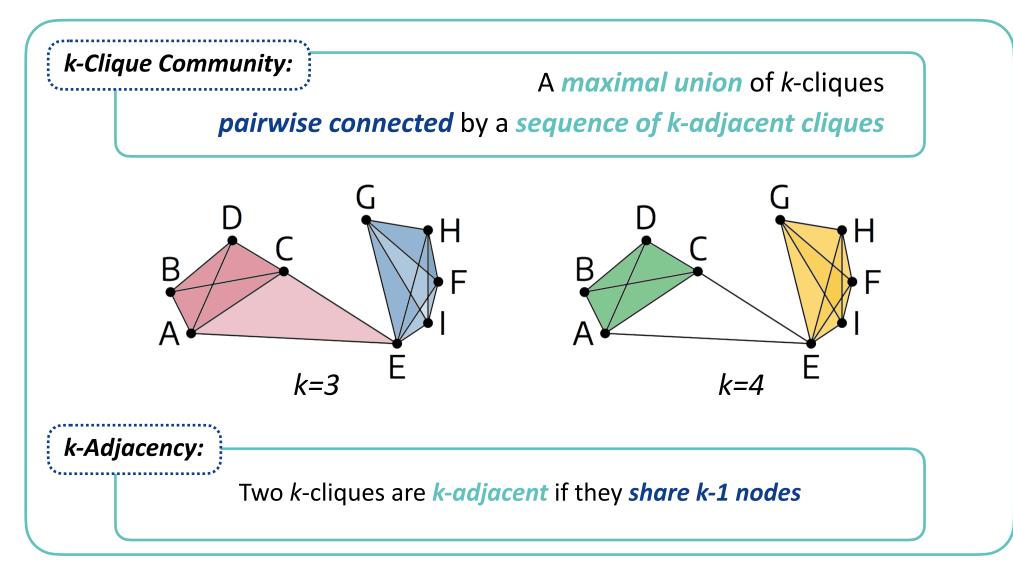
Persistence homological scaffolds for the placebo (left) and the psilocybin (right) groups



A Primer on Complex Networks

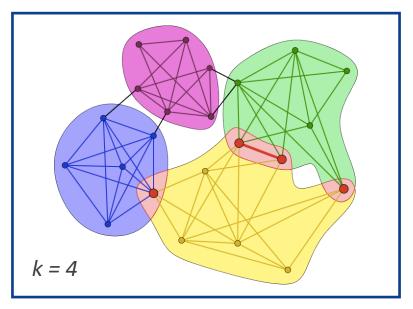
Homological Scaffolds

Clique Community Persistence



Persistence and Complex Networks

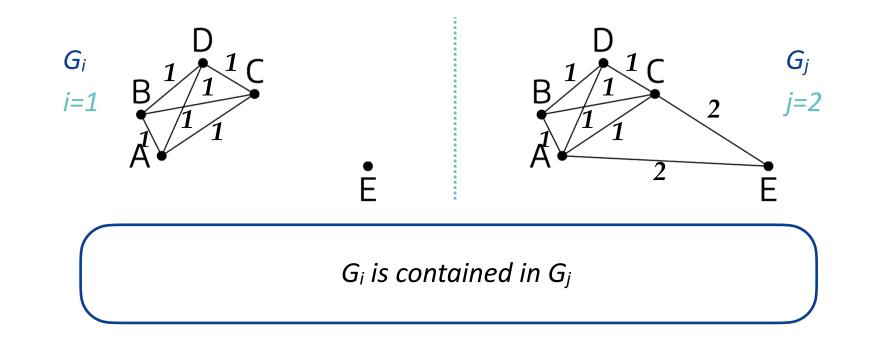
k-Clique Community Decomposition:



- Reveal *highly connected* communities
- Allow overlaps
- + Have a *hierarchical structure*

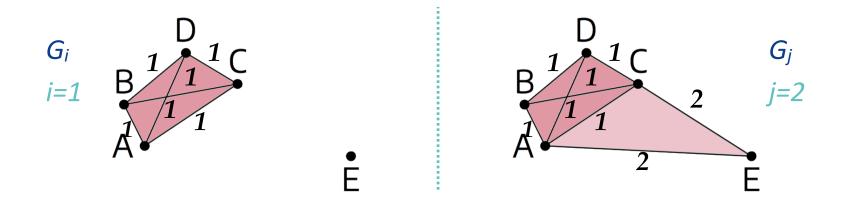
Clique Communities and Weighted Networks:

Given a weighted network **G** and two threshold values **i** < **j**,



Clique Communities and Weighted Networks:

Given a weighted network **G** and two threshold values **i** < **j**,



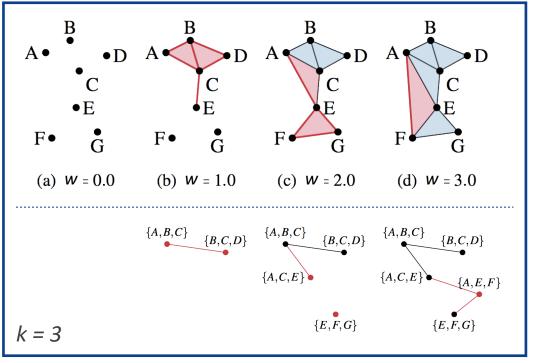
Each *k*-clique community of *G_i* is *contained* in *exactly one k*-clique community of *G_j*

Clique Community Persistence:

Fixing a value for k and varying the edge-weight threshold, the **persistence** of **k-clique communities** of G can be tracked by:

- Building a sequence of k-dual graphs:
 - · vertices \leftrightarrow k-cliques
 - edges ↔ adjacent k-cliques

 Tracking the *connected components* of the sequence of *k*-dual graphs



Clique Community Persistence:

The presented approach allows for designing tools for:

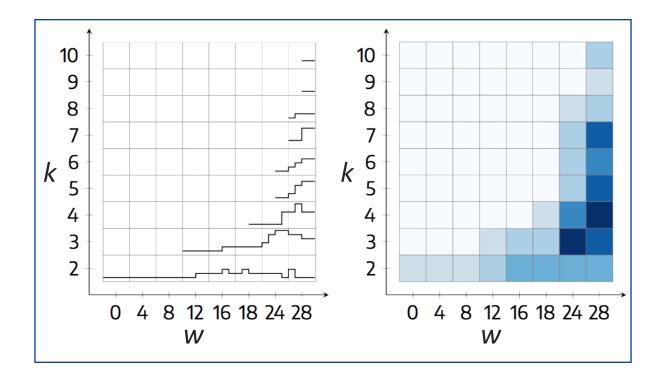
- Network Comparison
 - Comparison Measures
 - Persistence Indicator Function (PIF)
 - PIF-based distance
 - Clique Community *Centrality Measure*
- Single Network Analysis
 - Interactive Visualization Tool based on Nested Graphs

Persistence Indicator Function:

Defined as the function $f_k : \mathbb{R} \longrightarrow \mathbb{N}$

assigning:

w → *# k-cliques communities "alive" at threshold w*



Appanion 1

Appamion 2

Appa@tion 3

Witch Witch 3

Witch 1

Memeith

Porter

Macduf

Youngiward

Malcolm

ROSS

Lennox

Banquo Duncan

Lady Macbeth

Macbeth

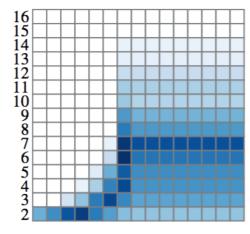
Donabain

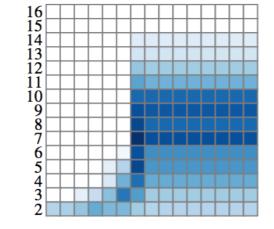
- Co-occurrence networks of Shakespearean plays
 - 37 plays considered

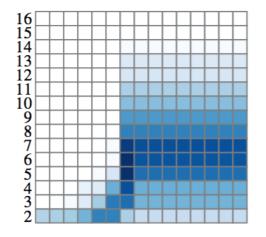
- In each network:
 - \cdot **nodes** \leftrightarrow **characters** of the play
 - \cdot edges \leftrightarrow characters appearing in the same scene
 - edge weight ↔ inverse of the number of interactions

Persistence Indicator Function:

PIF enables a comparison of structural differences between groups of plays







Comedies

PIF-Based Distance:

Given two persistence indicator functions f and g,

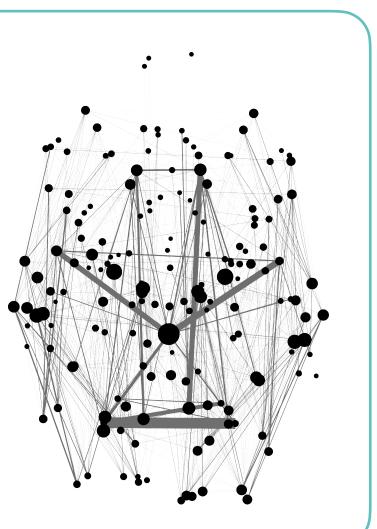
PIF-based distance is defined to be the L^p distance between f and g:

$$dist(f,g) = \left(\int_{\mathbb{R}} |f(x) - g(x)|^p \, dx\right)^{\frac{1}{p}}$$

- Quantifies dissimilarities between PIFs
- Easier to be computed than Wasserstein and bottleneck distances
- Highly correlated to Wasserstein distance

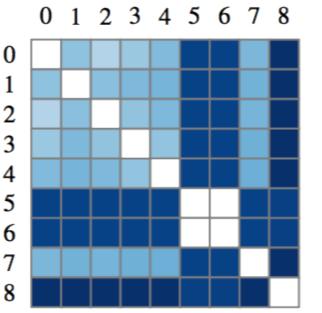
- PIF-Based Distance:
- Biological networks representing variants of human brain connectivity
 - 9 instances considered

- In each network:
 - \cdot nodes \leftrightarrow brain areas
 - \cdot edges \leftrightarrow fibers connecting different areas



PIF-Based Distance:

Variant	Density	Diam. (weighted)	Avg. degree (weighted)
0	0.125	4 (60.0)	21.21 (2300.3)
1	0.124	4 (60.0)	21.06 (2296.0)
2	0.124	4 (60.0)	21.13 (2295.2)
3	0.124	4 (60.0)	21.16 (2282.0)
4	0.124	4 (60.0)	21.15 (2279.3)
5	0.125	4 (60.0)	21.19 (2264.0)
6	0.125	4 (60.0)	21.19 (2264.0)
7	0.124	4 (60.0)	21.16 (2279.6)
8	0.125	4 (60.0)	21.20 (2257.5)



PIF-based distance reveals differences between networks that common graph measures are incapable of detecting

Clique Community Centrality:

Clique community centrality of a node *v* is defined as

$$centrality(v) = \sum_{C \ni v} pers(C)$$

where:

- C is any clique community containing v
- pers(C) is the "lifespan" of C

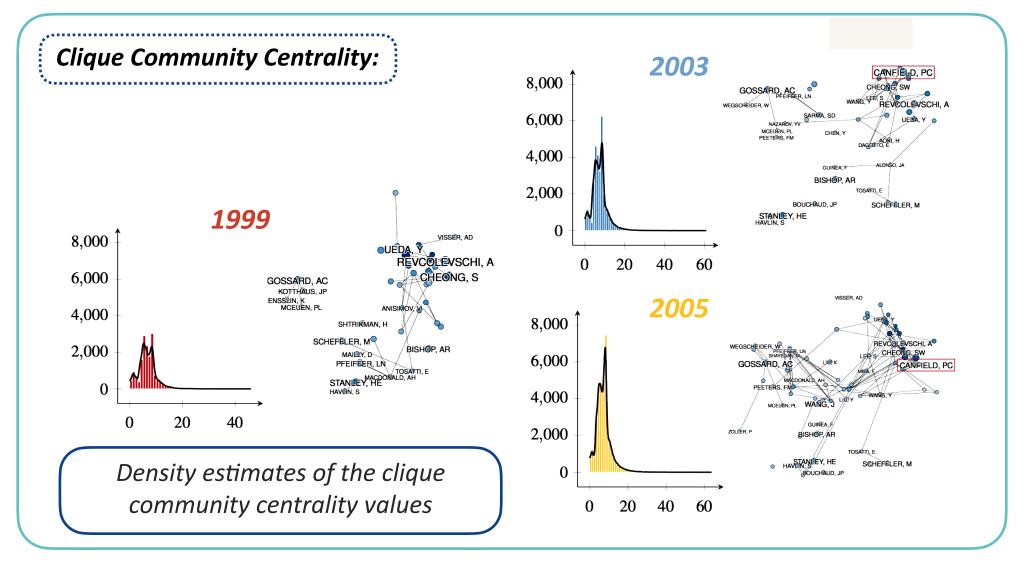
Nodes belonging to high-persistence communities are identified as relevant

Clique Community Centrality:

- Collaborative networks describing scientist co-authorship of the "Condensed Matter" arXiv category
 - *3* snapshots in time considered (1999, 2003, 2005)
- Network sizes:
 - 16K 40K nodes
 - 47K 175K edges

Clique community centrality allows for

- evaluating the evolution of network connectivity
- filtering away the less relevant nodes



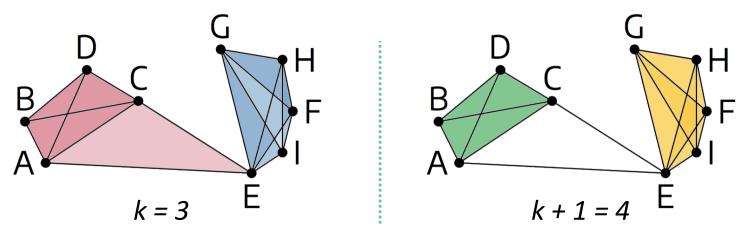
Clique Community Persistence:

The presented approach allows for designing tools for:

- Network Comparison
 - Comparison Measures
 - Persistence Indicator Function (PIF)
 - PIF-based distance
 - Clique Community *Centrality Measure*
- Single Network Analysis
 - Interactive Visualization Tool based on Nested Graphs

Clique Communities and Multiple k-Values:

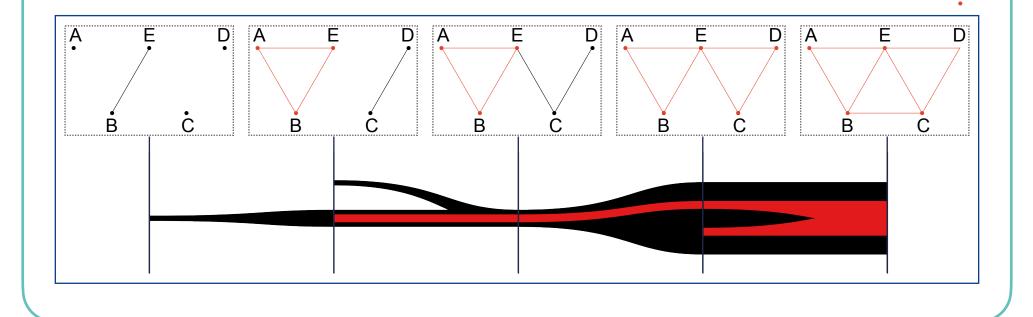
Given a weighted network **G** and any threshold value **i**,

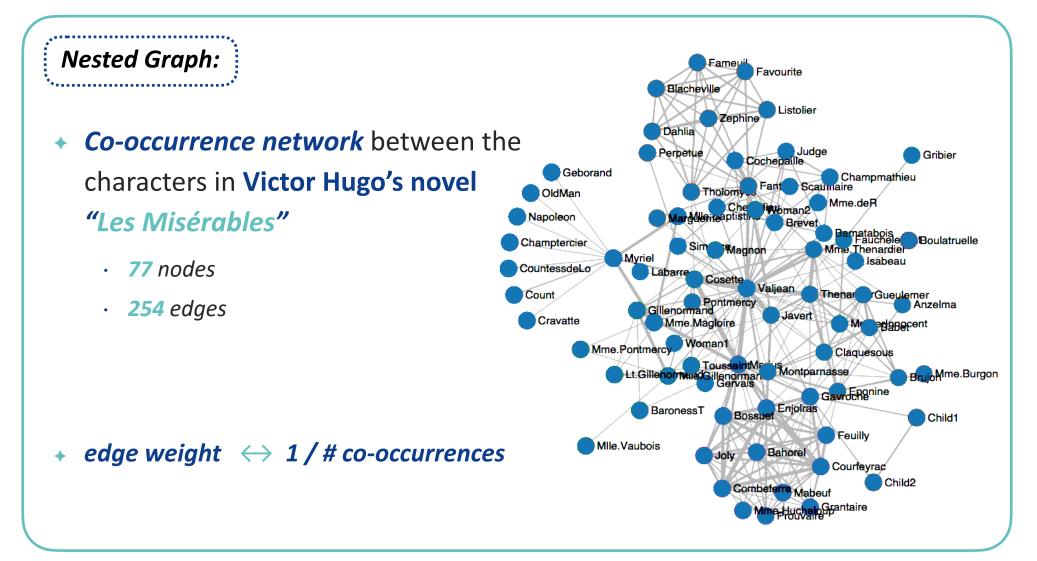


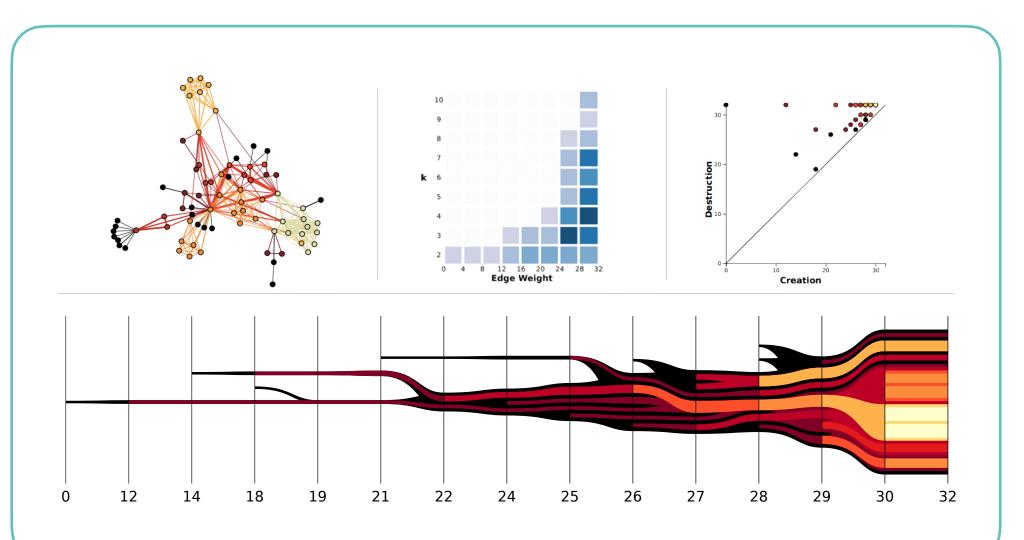
Each (*k*+1)-clique community of *G_i* is **contained** in *exactly one k*-clique community of *G_i*

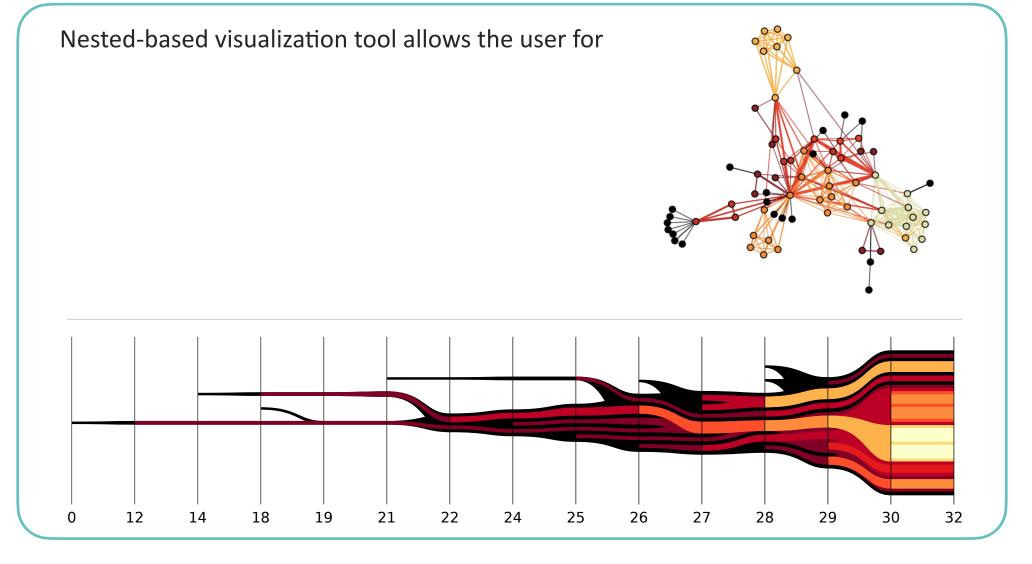
Nested Graph:

- Originally defined for connected components in scalar fields [Lukasczyk et al. 2017]
- Illustrates evolutions across two parameters



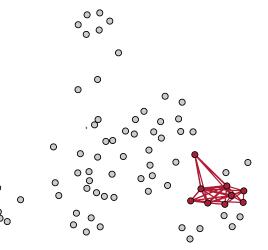




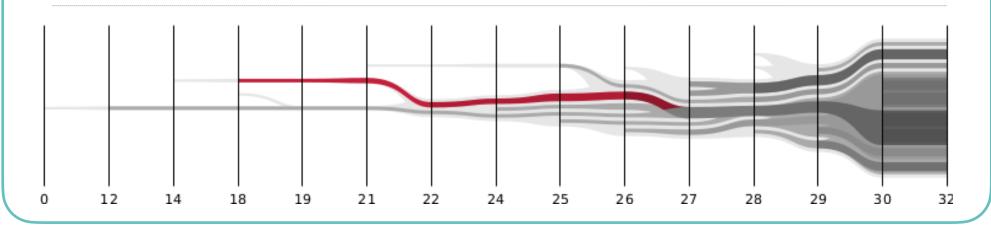


Nested-based visualization tool allows the user for

- focusing on the evolution of a specific clique community
- selecting and interactivity exploring different
 edge weights and clique degrees



while the force-directed graph layout and the nested graph *change accordingly* •

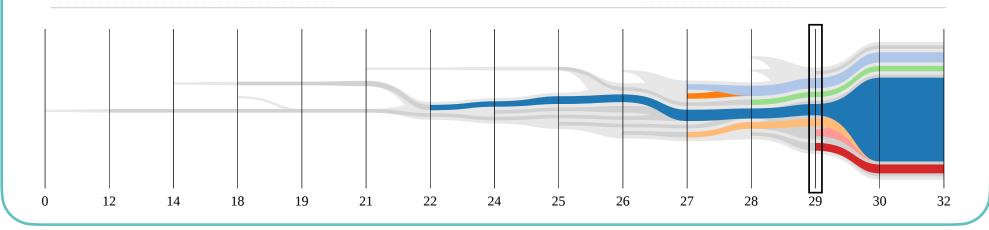


Nested-based visualization tool allows the user for

- focusing on the evolution of a specific clique community
- selecting and interactivity exploring different edge weights and clique degrees



while the force-directed graph layout and the nested graph *change accordingly*



Nested-based visualization tool allows the user for

- + **focusing on** the evolution of a **specific clique community**
- selecting and interactivity exploring different edge weights and clique degrees

while the force-directed graph layout and the nested graph *change accordingly*

Intuitively:

edge-weight variation↔reveal the core part of a communityclique-degree variation↔analyze community according to
different granularities

Bibliography

General References:

- Books on TDA:
 - A. J. Zomorodian. *Topology for computing*. Cambridge University Press, 2005.
 - * H. Edelsbrunner, J. Harer. *Computational topology: an introduction*. American Mathematical Society, 2010.
 - R. W. Ghrist. *Elementary applied topology*. Seattle: Createspace, 2014.

• Papers on TDA:

• G. Carlsson. *Topology and data*. Bulletin of the American Mathematical Society 46.2, pages 255-308, 2009.

Today's References:

- Complex Networks:
 - G.Palla, I.Derényi, I. Farkas, T. Vicsek. Uncovering the overlapping community structure of complex networks in nature and society. Nature, 435.7043, pages 814-818, 2005.
 - S. Fortunato. *Community detection in graphs.* Physics Reports, 486(3-5), pages 75-174, 2010.
 - J. Scott. *Social network analysis.* SAGE Publications Ltd, 2017.
 - M. Newman. *Networks.* Oxford university press, 2018.

Bibliography

Today's References:

- Homological Scaffolds:
 - G. Petri, P. Expert, F. Turkheimer, R. Carhart-Harris, D. Nutt, P. J. Hellyer, F. Vaccarino. Homological scaffolds of brain functional networks. Journal of The Royal Society Interface, 11.101, 20140873, 2014.
 - L. D. Lord, et al. Insights into brain architectures from the homological scaffolds of functional connectivity networks. Frontiers in systems neuroscience, 10.85, 2016.
 - M. Guerra, A. De Gregorio, U. Fugacci, G. Petri, F. Vaccarino. *Homological scaffold via minimal homology bases.* Scientific Reports, 11.1, pages 1-17, 2021.

Clique Community Persistence:

B. Rieck, U. Fugacci, J. Lukasczyk, H. Leitte. *Clique community persistence: a topological visual analysis approach for complex networks*. IEEE Transactions on Visualization and Computer Graphics, 24.1, pages 822-831, 2018.